




1. Introduction

The research described in this report is part of a larger project which has as

its final goal the demonstration of an autonomous, visually guided, land vehicle

[Davi85, Waxm85]. The vehicle will reach a desired destination by planning and

following dynamically chosen and revised paths. As planning proceeds, the vehi-

cle is commanded to move from point to point. However, errors in this move-

ment create a positional uncertainty proportional to the distance travelled. It is

therefore desirable to have a sub-system which can re-calculate the current posi-

tion and reduce the uncertainty to within acceptable limits. A collection of algo-

rithms for such a system has been designed and partially implemented in a

research environment. The system uses the knowledge of the vehicle's approxi-

mate position to visually locate known landmarks. It then triangulates using the

bearings of the known landmarks to acquire a new position with a reduced uncer-

tainty.

The system is composed of three modules, called the MATCHER, the

m - FINDER, and the SELECTOR, that interact to establish the vihicle's position

with a new level of uncertainty.

1) The MATCHER locates likely positions for one or more landmarks in an

image, and rates these locations according to some measure of confidence.
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2) The FINDER controls the pointing direction and focal length of the cam-

era to acquire specified images for a set of landmarks and directs the MATCHER

to find possible locations for these landmarks in the images. It then eliminates

possible locations for individual landmarks which are not consistent with the pos-

sible locations found for other landmarks. The FINDER then evaluates the

remaining possible locations to determine the actual locations of the given land-

marks.

3) The SELECTOR identifies a set of landmarks whose recognition in images

of appropriate angular resolution would improve the position estimate of the

vehicle by the desired amount. It then directs the FINDER to establish likely

locations in such images for subsets of those landmarks. With these locations,

the SELECTOR then computes new estimates of the vehicle position and posi-

tion uncertainty and directs the FINDER, if necessary, to locate additional sub-

sets of landmarks.

We assume the vehicle's camera is mounted on a computer controlled pan

and tilt mechanism and has a computer adjustable focal length. We also assume

estimates are available for the heading of the vehicle, as well as the current set-

tings of the pan, tilt, and focal length of the camera. A database of landmarks

exists that includes all pertinent landmark qualities, such as size and position,

and at least one representation of each landmark from which it could be recog-

nized in an image.

Chapter 2, 3, and 4 describe the MATCHER, FINDER, and SELECTOR,

repectively. In Chapter 5, we describe an implementation of the algorithms.
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2. The MATCHER

2.1. Overview

A generalized Hough transform is employed to locate landmarks of known

image orientation and scale. The landmarks are represented by lists of boundary

points which are individually matched to edge points in the image. The algo-

rithm consists of three main phases: edge point detection, matching of the tem-

plate to the edge points, and interpreting the results of the matching. Edges are

detected as points where the Laplacian changes sign and the local grey levels

have a high symmetric difference. Matching is done using the generalized Hough

transform and is restricted in two ways. First, template points match only points

having close to the same gradient direction. Second, only those template points

are used whose gradient directions have a high measure of informativeness; this

measure is defined in Section 2.3.3. Throughout this chapter, the description of

the algorithm will be supplemented by references to the two examples in Figures

2.1 and 2.2.

2.2. Getting the edge image

The image given is a grey-level picture (Figures 2.1a and 2.2a). It is first

smoothed using a local edge-preserving smoothing operator. This operator, the

symmetric nearest-neighbor algorithm, can be computed on any size neighbor-
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hood, but is simplest to describe for a 3x3. A brief description of the 3x3 algo-

rithm is provided below; for a full explanation see Harwood, Subbarao, and Davis

[Harw84].

For each pixel p in the image, consider a 3X3 neighborhood. For each pair

of symmetrically opposed neighbors, choose the neighbor whc3e grey level is

nearest in value to the center pixel's. In the case of a 3X3, there will be four

pairs and thus four points chosen. Replace p with the mean of these points.

One could also use the median of the four points, which results in better preser-

vation of corners; however it is slightly slower than using the mean and often the

improvement is not enough to warrant the extra time.

The implementation used in this thesis is a 5x5 version of this algorithm

with the mean computed for the nearest neigbors. Also, since the algorithm's

results improve with iteration, two iterations are done on the image (Figures 2.1b - '

and 2.2b).

A neighborhood size for the Laplacian, which is appropriate for the size of

the object being sought, is then selected and the Laplacian is convolved with the

smoothed image. At present, this selection is done manually and usually the size

is very small, such as 3x5 or 3x7. However, the selection could be done automat-

ically using such criteria as image size of the object or density of edge points, or

average local standard deviation of edge direction.

At any point where the Laplacian crosses zero (a positive pixel with a nega-

tive neighbor), the local symmetric contrast is computed. This is done by taking
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the maximum absolute difference in grey level of any two symmetrically opposite

points in a 3X3 neighborhood. This is a fast and isotropically smooth edge

strength measure and is used to eliminate all the false or weak edge points given

by the zero-crossing of the Laplacian. Using this measure of edge strength, the

weakest 75 percent of the zero-crossing points are eliminated. The resulL is an

image of thin contours (due to the zero-crossing operator) whose edge strength is

significant (Figures 2.1c-e and 2.2c-e). Many of the contours are often broken by

single pixels of low contrast, but this does not affect the matching procedure

which matches patterns of individual points and not patterns of extended con-

tours.

2.3. Matching

A generalized Hough transform (GHT), incorporating the gradient direction

at points, is used to perform the matching. The GHT and the specific implemen-

tation used are described in Section 2.3.1. Certain assumptions made regarding

the orientation and scale of the object in the image are explained in Section 2.3.2.

Finally, a discussion of the gradient direction informativeness measure introduced

in Section 2.3.1 is given in Section 2.3.3.

2.3.1. The generalized Hough transform

The generalized Hough transform is a fast point pattern matching algorithm

that can be used to detect arbitrary specific shapes in images (see [Ball8l] and

[Davi82]). The general problem solved is to find the function that best

transforms a set of object points (i.e., the shape) into a set of image points. This
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function will be in terms of the parameters allowed to vary in the transformation.

The result of the generalized Hough transform is a "Hough space" which indi-

cates the likelihood of any particular transformation being the correct one for the

given object and image. In our application, we are only concerned with finding a

transformation function that performs translation in a plane. All other transfor-

mation parameters (such as image scale and orientation) are assumed to be fixed

and known.

In our implementation, the object points are the boundaries of a landmark

being viewed from an (approximately) known direction and distance. The image

points are those found using the edge finding algorithm described in the previous

section. The gradient direction is calculated at both object points and image

points. Figures 2.If and 2.2f show the edges used in the image with the gradient

directions represented by grey levels. Figures 2.1g and 2.2g show the edges and

directions of the object boundaries. The object points are organized into an

"offset table" indexed on the gradient direction with a set of (x,y) pairs for each

gradient direction. The (x,y) pairs indicate the offsets to some arbitrary reference

point. We have used the centroid of the boundary points as the reference point.

For n gradient directions, the table is of the form

Offset Table
Gradient Direction Offsets to reference pe;nt

_____ ,,,____ _1_ (e ' , ('2, t ,2), ... , ( ),, 1 ,t, ),

_____________ (,_)~_(2,_t 2 )~. Oq_ 48)
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Each edge point in the image with gradient direction 0, may correspond to

one or several object points with gradient direction 0,. For each possible

correspondence, there will be a potential reference point. The positions of the

reference points, relative to the edge point, are given by the (x,y) pairs for , in

the offset table. Therefore, at each edge point e in the image with gradient direc-

tion 0,, the set of possible reference points can be obtained by adding each offset

for gradient direction 0, to the position of e. The generalized Hough transform

operates by incrementing, in ar. accumulator array, all the possible reference

points for each edge point in the image. The accumulator array is the Hough

space mentioned above.

In the general case, the maxima in the array A represent the most likely parame-

ter values which would characterize the best transformation functions from the

object to the image. In our case, the maxima in A represent possible locations for

the object in the image.

2.3.2. Orientation and scale

As mentioned above, we assume we know the orientation and scale of the

object in the image within a given tolerance. The template can therefore be

scaled and rotated to match the appearance of the object in the image. This

eliminates the need for the generalized Hough transform to include scale and

orientation parameters; however, the implementation used should allow for errors

in both parameters. This section describes how our implementation allows for
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small errors.

Orientation errors effect the algorithm through mismatches of gradient direc-

tion between image edge points and boundary points in the template. A

mismatch can occur because of errors in the measurement of the g adient direc-

tion, noise near the edge point in the image, actual local differences between the

object's silhouette in the image and the template, or a grossly inaccurate assump-

tion of the orientation of the object in the image.

Two measures have been taken in an effort to increase the likelihood of the

correct reference point being incremented for each of Lhe above cases. First,

when the gradient direction is calculated, it is rounded to the nearest 10 degrees.

Second, during the matching process, instead of matching points only when their

gradient directions are equal, edge points with gradient directions within ±15

degrees of a template point's gradient direction are also matched.

Small errors in scale effect the algorithm by incrementing points in the

Hough space which fall just short or just long of the actual reference point. This

will create a faint inverse silhouette of the object in the Hough space whose size

indicates the magnitude of the scaling error. When the error is very small (one or

two pixels), the inverse silhouette is just a small diffuse dot. Post-processing of

the Hough space can therefore find the center of the dot by local averaging.

2.3.3. Gradient direction informativeness

It can often occur that one or several gradient directions are so prevalent in

the image that they produce strong voting clusters in Hough space at incorrect



locations. If a gradient direction occurs at N edge points in the image and at M

template boundary points, then MxN increments are made for that gradient

direction in the Hough space. Since usually only a small fraction of the edge

points in the image are part of the object's boundary, the remainder of the

matches can potentially contribute to false peaks in the Hough space.

Also, if a gradient direction is prevalent in the template, then, as a group,

points with that gradient direction will contribute more correct votes than would

points with an infrequent gradient direction. This is, of course, because there will

be more boundary points with the prevalent gradient direction incrementing

potential reference points. Therefore, when the reference point happens to be the

correct location for the object, more of the votes contributing to its peak will

come from points with the prevalent gradient direction than from points with an

infrequent gradient direction.

To use these observations to best advantage, a measure of gradient direction

informativeness (GDI) was developed to rate the gradient directions. Then, only

those points whose gradient directions rate highly are used in the matching. In

this way, we can eliminate the uninformative sources of spurious patterns 'n the

lough space and make best use of the most informative points. The measure

used is - where P[ G 1, is the probability that gradient direction G occurs in
F] G j,2

the template and P[ G J1 is the probability that g-radient direction G occurs in the

image. The actual probabilities are extracted from histograms of the template

and the image. Based on this measure, only the most informative 15 percent of

- 10 -"



07

the edge points in the image are used in the matching. Consequently, boundary

points in the template whose gr.dient directions are not selected will not be used.

It can be seen that gradient directions that occur often in the template but

infrequently in the image would rate very high on this scale. Also, gradient

directions with few occurences in the template but many in the image would rate

very low. Points with such gradient directions would yield a high number of

unrelated votes, cluttering the Hough space and creating false peaks.

This measure has proved very successful in several tests. Figures 2.3 and 2.4

show the Hough space for two pictures with varying degrees of filtering using the

gradient informativeness measure. It is clearly most useful when a few gradient

directions, which are not essential to locating the object, dominate the image.

dFigure 2.5 shows the object points actually used in the matching for our two

. -examples. In each case, the most informative 15 percent were used.

2.4. Finding the peaks in the Hough space

The matching algorithm described in Section 2.3 produces a two-dimensional

• Hough space the same size as the image being searched (Figs. 2.1h and 2.2h).

The local intensity peaks in this image represent possible locations for the object

in the image. To avoid making false conclusions when near ties occur, ,re pro-

duce a list of the possible peaks with their respective confidences. This allows

the decision about which peak represents the actual location to be passed to

higher level decision-making systems. The process of producing the list from the

Hough space can be thought of as several passes of simple neighborhood

0 -11-
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operators:

(1) Sum the votes in a KxK neighborhood.

(2) Perform non-maximum suppression on a JxJ neighborhood, i.e., eliminate all
points having a neighbor in a JxJ neighborhood with a higher sum.

(3) Compute confidences of the remaining points.

This process could be quite inefficient if it were computed on array-

formatted pictures of any significant size; therefore, some reasonable limits were

imposed on the numbers and values of points that were of importance at each

step in the process. The resulting algorithm, using these limits and lists of sorted

points, is as follows.

(1) The N points having highest vote counts are selected and sorted into a list
on vote count. (N is selected to ensure not eliminating the correct object
location. Fifty has proved to be a sufficient number fo r all cases tried.)

(2) All points whose vote count is below M percent of the highest value are
eliminated.

(3) For the remaining points, the vote count is replaced by a sum of the vote
counts in a K x K neighborhood and a new iist sorted on this value.

(4) In this new list, those points are again eliminated which are below M percent
of the highest in the list.

(5) Non-maximum suppression is used to identify the local maxima. Starting at
the low end of the sorted list of summed points, each point, call it a, is com-
pared to each of the points below it. If a point, t, below point a is in a J x J
neighborhood centered on s, then eliminate t. The algorithm must start at
the bottom of the sorted list so that points are not eliminated before they
have a chance of eliminating others.

A measure of confidence is now calculated for each remaining point. It is

designed to indicate both the strength of the peak and how it relates to other

surviving peaks. If it is necessary to compare confidence measures for peaks in

several images of different size and edge content, then this confidence measure

should be normalized.
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If V, is the number of votes for location x (summed over a K xK neighbor-

hood) and there are n possible positions, then the confidence measure is corn-

puted as follows:

, --- --- -- 100

t2v.

In words, the confidence measure C. is the number of votcs that location x

received (summed over a K x K neighborhood centered on x) expressed as a per-

centage of the total votes given to all points (summed over K xK neighborhoods)

in the list of possible positions.

Figures 2.1i-j and 2.2i-j show the most confident peak found using this algo-

rithm. The template boundary points are overlayed on both the Hough space

and original image.

2.5. Suggestions for improvements

Certain simplifying assumptions are made in the MATCHER. Although

some are reasonable for the intended application, in general the system is less

robust because of them. One such assumption, that the scale and orientation of

the landmark in the image are known, can be eliminated by including the scale

and image orientation of the landmark as parameters in the Hough transform.

Although this would result in a four dimensional Hough space, the range of

values in each dimension could be limited and therefore make computation time

reasonable.
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A possible improvement to the MATCHER is, after a set of possible posi-

tions is found, to try to match the landmark model at these points without the

GDI filter that was applied in the first matching process. This would strengthen

and better delineate the actual location of the landmark.
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3. The FINDER

3.1. Overview

This chapter describes a strategy (the FINDER) for determining bearings to

a given set of landmarks. The FINDER is also given specifications for images in

which it can expect to find these landmarks. It then controls the camera to

obtain these images and uses the MATCHER to establish likely locations for the

landmarks in their respective images. Since the search for any specific landmark

may result in several possible locations for that landmark (at most one of which,

of course, can be correct), we employ a simple geometric constraint propagation

algorithm to eliminate many of the false locations.

The geometric constraint propagation algorithm considers possible locations

for a pair of landmarks and determines if they could both be the correct location

for their respective landmarks. Two possible locations (or, more briefly, peaks)

are called consiatent if they meet this criterion. The details of this consistency

computation are described below. With consistency determined for all pairs of

peaks, a graph is then constructed in which nodes are peaks, and arcs represent

the mutual consistency between two peaks. Analysis of this graph can determine

consistency among groups of more than two peaks and therefore eliminate peaks

based on more than just pairwise inconsistency.

-15 -



. - . . . - I. V.

3.2. Consistency between peaks

To determine consistency between two peaks p, and p2 for landmarks L, and

L 2 , we first calculate a range of possible angular differences between LI and L 2

based on the vehicle's position uncertainty. We then extend this range by the

pointing error and check that the measured angular difference between pI and p2

falls within this range.1 See Figure 3.1.

The angular difference between L, and L 2 is determined by simply taking the

difference of their bearings. The range of angular differences is then obtained by

letting the value for the current position vary according to the position uncer-

tainty of the vehicle. For the purposes of this analysis, we assume that the posi-

tion uncertainty can be represented by a solid disc on the local ground plane. If

we make the reasonable assumption that neither landmark lies inside the disc,

then it is easy to show that the positions which give the maximum and minimum

angular differences will always lie on the circumference of the disc. To prove

this, we give the following informal argument.

Assume the contrary, that p is a point inside the disk for which the angle .'"

LIpL2 is maximum. Consider a line which bisects this angle. Since p is inside the

disc, there must exist a point p' on that line which is also inside the disk and is

closer to both L, and L2. See Figure 3.2. Clearly the angle Lip' L2 would be

greater than LjpL2. This contradicts our assumption. 2 A similar argument can be

applied if LjpL2 is assumed to be a minimum.

We could also account for the error due to pixel sixe, but do not since it is negligible.

2 Note that this does not imply that tLe solution points will be at the intersection of the bisector and the circumfer.
ence of the disk. We could find no such simple intuitive solution to this problem.
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From these positions we can then calculate directly the maximum and

minimum angular difference between L, and L2. An abbreviated derivation of an

analytic solution for these points follows.

We define the positions of the two landmarks LI and L2 to be (z,, )., and

(Z2,Y2)M, in map coordinates. The current vehicle is at (xO,yo)M, and the disk of

uncertainty is centered on this location and has radius r. We then transform all

locations from map coordinates into a coordinate system centered on the vehicle

position. All coordinates from now on will be in this new coordinate system.

Two lines with slopes m1 and m2 meet at an angle p (measured from line I to

line 2 counter-clockwise) given by

M 2 - MIn
~~atan( + -I-Mm 2 (1

Pl-Y Y2-UV"'

If mI= !I- M, 2 - , (z,y) is the vehicle's actual position, andX I-Z Xr 2- Z -'

(zl,yi) and (z2,4 2) are the locations of two landmarks, then equation (1) would

determine the angular difference between the two landmarks.

We can find the extrema of v by differentiating equation (1) and setting it

equal to zero. Since (z,y) is constrained to lie on the disk's circumference, we can

represent (z,y) as (rcosa,rsin9). Note that there is only one variable, e, since r is a

constant. This makes = y-r sin Differentiating equationconstant.~ ~ Thsmksm - _r cosO an m =r-r cosd

(1) and simplifying, we obtain
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ds dt do dl da d
I dO dO 1 d dO dO dO

- - -- 2 #2 + 2 12 t2 + 
2  .2

with

s -rcoe 6(Y2 - p ) + Z1Y2 - z=y 1 - ran O(z 1 - Z2)

t -rsin 0/2 + Y 1) + U i2 + XZI2 - r cosO(Z + z2) + r 2

Setting equation (2) to zero, we obtain

do dto =- t - .-. - N -Mein e -Pco e (3)

where

N= r (y22 -2 +z2 - ),

M=-y yY + YI 2 + XIY 2 + (yI-Y )- y , and

P = X , -I( - X2 + , + zlz2 + ,(zl- x ..j •.

Since cose = _., sine = -, andy = . / z2 , we can rearrange equation (3) to getr r .

the quadratic

0 = (p 2 + M2 )z 2 + 2NMrx + (N 2 
- P 2 )r2. (4)

At the solution points to (4), we calculate the angle between the two indivi-

dual landmark points and subtract using the equation

= 02 - 01 = atan ( ,Y2- atan ( ) - = Man (inm).- atan (in 1 ).
Z2-Z I -

Calculating 0 for each solution, we get the maximum and minimum angular

differences between the two landmarks L, and L 2 given a position uncertainty of

::*r.
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At this point we extend this range to allow for the pointing error of the

pan/tilt mechanism. This is done by simply adding the error to the range.

3.3. Consistency Graph Analysi-

As mentioned above, the consistency graph represents consistency relations

between the possible locations for different la'idmarks. Ideally, we would want to

determine the maximal complete subgraphs (MCS's) of this graph because they

would represent the largest sets of landmark locations that are all mutually con-

sistent. For small graphs this is not impractical, but for large graphs we might

be forced, due to time constraints, to perform a simpler analysis.

We can, for example, apply certain simple iterative tests to the graph that

would eliminate any landmark location not p-irt of at least a k-clique. In what

follows, we identify two simple tests for eliminating nodes not part of k-cliques.

These processes are similar to so-called "discrete relaxation" algorithms - see,

e.g., Haralick and Shapiro [Hara7g].

First, we can iteratively eliminate all nodes which do not have arcs to nodes

representing at least k other distinct landmarks. After this process is complete,

we can then eliminate all nodes which are not the center of what we refer to as a

k-fan. A node n is the center of a k-fan if there exists a connected chain of

nodes of distinct landmarks of length k-i in which each element of the chain is

connected to n. Figure 3.4 contains an example of applying both node deletion

processes to a graph of landmark locations. Finally, we find all MCSs for this

pruned graph.
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Since we could end up with several MCSs, we now need a way to determine

which is the actual set of landmark locations. To do this, we define an evalua-

tion function to operate on the MCSs and then pick the MCS which responds

best to the evaluation function. In our current system, we use a simple summa-

tion of the confidences for each of the possible locations.

- 20-
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4. The SELECTOR

4.1. Overview

This chapter describes a strategy (the SELECTOR) for selecting a set of

landmarks whose identification in appropriate images would improve the current

estimate of the vehicle's position. The SELECTOR supplies subsets of these

landmarks, with appropriate image specifications, to the FINDER which returns

the most likely relative positions for each landmark in each subset. The SELEC-

TOR then computes the vehicle's actual location and the new uncertainty associ-

ated with it. If this new uncertainty is insufficient, then the SELECTOR can

either simply accept the new uncertainty as the best achievable result, or try to

further improve the position estimate using other landmarks.

Given a database of visual landmarks, a variety of strategies can be

empleyed to select a subset of those landmarks for identification. The implemen-

tation of any of these strategies requires the ability to determine both the ease of

identification of any given landmark and the effect of its identification on tLe

vehicle's position uncertainty. The development of these abilities is described ir

Sections 4.2 and 4.3. Further discussion of the SELECTOR module continues in

Section 4.4.
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4.2. Determining ease of identification

Many factors effect the ease of identification of a landmark. Some examples

are the size of the landmark in the image being matched, the stability and

geometric complexity of the landmark's model from the current vantage point,

and the position of the sun. In a more sophisticated system, we may have infor-

mation about the visual surroundings of the landmark and be able to consider

the landmark's relative uniqueness in the image as a factor. In this section we

consider two factors: 1) te ability to obtain an image that will allow us to accu-

rately locate a particular landmark, and 2) the suitability of the landmark's

model for use with the MATCHER.

4.2.1. Suitable image verification

The two quantities that determine an image are direction and focal length

(or field of view). The direction is constrained by the fact that extremely bright

scenes (i.e., those containing light sources) will most likely saturate the camera

and result in a pure white or washed out image. It would clearly be futile to

search for a landmark in such an image. The directions in which these scenes

might occur could be predicted by using special instruments or by analyzing

failures of the MATCIIER. To determine the camera direction, we simply use

the bearing of the landmark with respect to the current presumed vehicle posi-

tion. This can be calculated straightforwardly from the coordinates of the land-

mark and vehicle. We can then verify that the camera does not point towards a

"bright scene".
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There at least four constraints on the appropriate focal length for a suitable

image.

(1) The focal length must be short enough for the image to contain the land-
mark after accounting for all the errors in our estimation of its position.

(2) The focal length must be long enough to insure that locating the landmark
would improve the position estimate.

(3) The focal length must be long enough to guarantee that the tandmark will
appear in the image with a size (in pixels; large enough for it to be r-liably
located.

(4) The above three constraints must be satisfied by at least one focal length
within the available range of focal lengths for our imaging system.

The first three constraints are discussed in the next three sections. The last

constraint and the verification process are addressed in the following section.

4.2.1.1. Determining the minimum field of view

In order to insure that we obtain an image large enough to contain a partic-

ular landmark, we need to know the physical size of the landmark, its position,

the vehicle's current position, the vehicle's current position uncertainty, and the

pointing error of the camera control system. These parameters determine the field

of view (fov) necessary to include the landmark.

To determine the minimum field of view needed, we use a method illust:ated

in Figure 4.1. The factors considered are the size of the landmark and our ability

to point the camera at the landmark. Our ability to point the camera in the

correct direction depends on how well the landmark's bearing can be approxi-

mated from our current position, and how precisely the camera can be pointed in

that direction.
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Our approximation of a landmark's bearing can only be as accurate as our

approximation of the current vehicle location. If a set of haiflines, emanating

from a landmark, are extended through all the possible vehicle locations, then

they form a wedge with an angular width 0. This angle 6 is the amount of angu-

lar uncertainty with which either the landmark or the vehicle could locate each

other.

Now, a landmark L with width W will subtend an angle o in the field of

view which depends on the distance D to the landmark. Since the focal length

will be very small compared to the distance, D, to the landmark, we can approxi-

mate D - focal length , the distance from the landmark to the center of focus, by
w

D. Therefore, L subtends approximately = arctan(-).
D

The camera control mechanisms will cu.-tainly have an inherent angular

uncertainty error (pointing error) which we will denote by ¢'. The same will t>e

true of the heading feedback equipment and we will denote this orientation

uncertainty by a.

We can now simply add these four angular uncertainties together to arrive

at a total field of view which, if centered on our best approximation of the land-

marks location, will be guaranteed to contain the landmark. Therefore, the

minimum fov for L is,

minimum-FOV 0 + =+ a +

For a camera with a di,itizing surface of size p (in millimriters), the minimrnum-FOV

can be obtained by using a focal length max-ft given by
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max-fl - /#

tan(minimum-FOV)

4.2.1.2. Satisfying the accuracy requirement

The objective of the SELECTOR is to reduce the vehicle's position uncer-

tainty to a certain amount. Since the new uncertainty of the vehicle location is

determined by the bearings for landmarks of known positions, the accuracy of

those bearings determine the accuracy of the new vehicle position. We now

describe how to express this accuracy requirement as a minimum focal length for

the image in which we identify that landmark.

The achieved angular accuracy is determined by the pointing error of the

pan/tilt mechanism ,the error in orientation estimation and the width of a pixel

in the image where the landmark is located. A pixel will subtend a certain angle

in the field of view (called the pixel angle3 ), that depends on the focal length of

* the lens, the width of the camera's imaging surface, the spatial resolution

(number of pixels across) of the camera, and the position of the pixel in the

image. Since the position of the landmark in the image can not be kncwn at this

point, we approximate it by the center pixel of the image. 4 Using this approxima-

tion, we have pixel angle - arctan( HM fi Zeo t ). The pointing error, 0,
fcllength -resolution

and orientation error, a, are expressed as degrees in the pan and tilt direction.

- These errors in the pan direction are then added to the pixel angle to get the

3 This is also known as the instantaneous field of view or IFOV, since the pixel is the result of one instintaneous
* sampling of the scene by the imaging device

• This is not a critical assumption since even in the largest field of view the pixel angle would only vary by a very
small amount across the entire image.
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total angular error. That is,

film sizetotal angular error ---- + + arctan(focal length - resolution) (6)

To calculate the focal length needed to achieve the required accuracy, we

simply solve for focal length in equation (6), as follows:

minimum focal length =film size
tan( minimum angular error - (0 + a)) resolution

With this minimum focal length established, we can then know when the bearing

of a landmark, found in a particular image, meets the accuracy specific itions

given for that landmark.

4.2.1.3. Determining minimum size

We still need to insure that the landmark we are searching for will appear in

this initial image with a size that maintains at least some of its unique identify-

ing features. The minimum spatial resolution (number of pixels across the land-

mark), min-pixels, needed to insure this is determined a priori for each landmark.

The minimum focal length, min-fl, is then given by

film sizemin -fl
tan(min -pixel# pixel angle)

4.2.1.4. Constraint checking

To visualize the restrictions that these constraints put on our choice of focal

length, refer to Figure 4.2 where they are displayed on a focal length axis. The

thick part of the line axis represents the rang2 of available focal lengths. Two of

the constraints specify ranges bounded by minimum values and one specifies a

range bounded by a maximum value. If these ranges overlap in a region that has

- 28-

0

' . --'..--.. ., '..-.--..'.t, -"J'""' .........................................................................................-........ _" • ,



some part within the range of available focal lengths, then a suitablc, image is

obtainable. In fact, the most desirable image, in light of these constraints, is

most likely the one with the longest focal length in this acceptable region.

If the limiting factor for our choice of focal length is the maximum available

focal length, then we can simply use a window from an image with a shorter focal

length as long as this shorter foca! length obeys the other constraints. This, in

fact was done in the implementation of Chapter 5. Note that in a more sophisti-

cated system, if the limiting factor is the minimum available focal length (i.e., the

acceptable range is entirely below it), then several higher resolution images with

smaller fields of view could be used to systematically cover the field of view that

the original image would have covered.

4.2.2. Landmark model/MATCHER suitability

Recall that the MATCHER selects points to match based on gradient direc-

tion. Points are matched only if their gradient direction appears frequently in

the model compared to its occurance in the image. Without future knowledge of

the image, we can only assume that a model with a uniform distribution of gra-

dient direction would be best. This is because if the model has a frequent gra-

dient direction that also occurs frequently in the image, then this gradient direc-

* . tion will probably not be matched, causing a disproportionately large number of

model points not to be matched. Therefore, we can use, for example, the stan-

dard deviation of the gradient direction counts as a measure of how uneven the

distribution is for the model. This can then be compared to other landmarks to
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help determine the best choice.

4.3. Determining the effect of identification

This section describes how to determine the extent to which finding a partic-

ular landmark's bearing would effect the vehicle's position uncertainty. To do

this, we first explain how that landmark's bearing would be used (with other

landmarks' bearings) to help determine the new vehicle location. Then, we show

how to obtain an estimate of the uncertainty for this new vehicle location.

Given a pair of bearings (B1 ,B2) for two landmarks with known positions

(Z1,Y1) and (:2,2), we can find the actual vehicle location by intersecting the lines

passing through (:i,gi) with angle B, and (:2,Y2) with angle B 2. See Figure 4.3. If

the bearing B, to landmark L, is only known to within :t,, then the possible

lines passing through (z,,y,) would sweep out a wedge W, of angular width 20, on

the ground plane. See Figure 4.4a. Since for each landmark, Lfound 'he vehi-

cle is constrained to lie in the planar wedge W,, then the vehicle must lie in the

convex polygon formed by the intersection of these wedges. See Figure 4.4b.

The size and shape of Lhis convex polygon is determined by the width of

each wedge at their intersection and the angles at which they intersect. The

width U, of a wedge W, at a distance d, from L, is given by U, = 2.d, .tanD,, where

*9, is the uncertainty of the landmark bearing as calculated in Equation (6).

Therefore, the effect of finding L, 's bearing on the vehicle location uncertainty is

proportional to the angular uncertainty 0, of the bearing and the distance from

L, to the actual vehicle location. Since the actual vehicle location is not known at
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this point, we approximate it by the assumed current position.

Now, since the vehicle is known to be within a certain distance r of the

assumed current position, we can initially constrain the vehicle to lie within a

convex region centered on the current position. For the purposes of this analysis,

we shall assume that this region is a square of dimension 2r. Therefore, initially

the effect of finding landmark L, is that of finding the intersection of the wedge

W, and the square region of uncertainty. We will now discuss briefly a simple

method for finding this intersection and evaluating its size.

A natural representation for the wedges and the initial uncertainty region is

the intersection of halfplanes, primarily because the wedge is unbounded in one

direction and our initial uncertainty region is convex. The initial uncertainty

region is represented by the intersection of four halfplanes. Then we add to this S

set the two half planes which represent the first wedge. We now have the inter-

section of six halfplanes defining a new convex polygon 5 (see Figure 4.5a). As

wedges representing the subsequent landmark3 are added to the set of halfplanes,

the convex polygon (resulting from the intersection of the halfplanes in the set)

will get smaller and smaller (see Figure 4.5b).

To express in one parameter the uncertainty represented by a convex

polygon, we find the two vertices which are furthest apart. Half of the distance

between these two vertices is a reasonable approximation of the "radius" of this

polygon. This "radius" can be compared to the original z' to determine to what

e:,tent the vehicle's position uncertainty has been reduced. 5

*The interection of any number of halfplaaes is a convex polygon.
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4.4. The SELECTOR continues

By maximizing both the ease of detection and the effect of identification as

discussed in the previous sections, the SELECTOR arrives at a set of landmarks.

During this process, it calculates a direction and optimal focal length for each

landmark that specify an image in which that landmark can be identified. The

SELECTOR then directs the FINDER to find the subsets of landmarks in their

respective images. (One might search for only a subset to limit the amount of

effort devoted to a potentially fruit!ess search; if some critical subset cannot be

identified, a completely new set of landmarks could be chosen.)

The FINDER returns its best estimate of the locations of those landmarks

along with the bearings calculated for them. From these bearin-g and the loca-

tions of the landmarks, the SELECTOR then computes new estimates of actual

location and uncertainty. These calculations were described in Section 4.3. If all

the landmarks were found as expected, then this new uncertainty will meet the

initial uncertainty requirement. However, if only a subset of the landmarks

selected for the set were found, they could, in some circumstances, determine an

acceptable uncertainty. If they do not, then the SELECTOR can choose another

combination of landmarks for analysis.
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S. An Implementato-

This chapter describes a partial implementation of the system described in

the first four chapters in an indoor environment. The FINDER and MATCHER

are completely implemented to the extent possible with the available equipment.

The SELECTOR is partially implemented. The parts not implemented on the

computer were done by hand and results supplied to the system when needed.

5.1. Experimental Environment

The environment was a terminal room adequately lit from above by several

rows of fluorescent lights. The camera used was a Cohu 2800 with a manually

adjustable zoom lens having a range of 20mm to 80mm. The camera was

mounted on a large tripod with manual adjustments for pan, tilt, and spin. Pro-

gramming was done in both C and Franz Lisp on a VAX 11/780 running under

the UNIX operating system (BSD 4.2). For information on the interface between

Franz Lisp and C see [Andr84J.

5.2. Programming

Top level control of both the SELECTOR and FINDER is done with the

YAPS production rule system for flexibility and extensibility. YAPS integrates

naturally with Franz Lisp, as the right hand side of YAPS rules can be arbitrary

sequences of lisp expressions. Lisp functions comprise most of the FINDER and
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SELECTOR and are called from the right hand side of simple YAPS rules or

from other lisp functions.

The database is comprised of YAPS facts and knowledge stored as lisp data

structures. The YAPS facts are used for high-level decision making and the

firing of YAPS rules. The lisp data structures are generally symbols having pro-

perty lists containing global information for the system. For instance, all the

landmark information is stored in this manner.

The MATCHER is in two parts, the Hough transform and the Hough space

analysis. Both were written completely in C, but are used as lisp functions. This

is the case with many other functions which might have required a large amount

of numerical computation, such as the calculations for the minimum and max-

imum angular difference between landmarks (in Section 3.1.1).

5.3. Operation of the system

As mentioned above, only parts of the SELECTOR module are currently

implemented. These parts are the computation of a minimum image to include a

particular landmark and the triangulation to arrive at the new position. There-

fore, in this example the author functioned as the SELECTOR for many tasks.

What follows is a simplified step by step description of the operation oi ,he sys-

tem (divided into sections labeled with the module currently in control).

5.3.1. The SELECTOR selects

The room was first examined for interesting landmarks which could be easily

located and seemed disparate enough to result in a small uncertainty for the new
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position. It was decided that three landmarks would be a good number for

demonstrating the system. They were a wall phone, a coffee cup taped to a

blackboard, and a wall outlet with a cord plugged into it. The positions and

sizes of these landmarks were measured precisely and entered into the database.

The layout of the landmarks in the room is shown in Figure 5.1. The existance 1

of suitable images for these landmarks was then verified followed by the determi-

nation of those suitable images with the longest focal lengths. They were as fol-
lOWSS

lows:

Image specilications I_

Bearing of
Landmark imaqe center Focri! length (m m) FOV (derorees 1
phone 58 54 10
cup 96 06 6
plug 139 114 5

Templates for eventual use by the MATCHER were then created for the:;e

landmarks. This was done by obtaining high resolution images in which the .

landmarks were distinct from the surroundings. These images were then reduced . -.

to the size they would appear at from the vehicle's assumed current position. -

The gradient direction was then calculated at strong edge points to obtain a set

of object points suitable for the MATCHER (see Chapter 2).

The landmarks chosen were then specified to the FINDER along with the

corresponding images specified above.
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5.Z.2. The FINDER obeys

The FINDER then requested that the camera be positioned to obtain each of

the three images designated. These images are shown in Figure 5.2. After each

one was obtained, it called the MATCHER routines to find likely locations for

the corresponding landmark in the image. The MATCHER used a Laplacian of

size 3X7, the top 25 percentile of the edge points, the top 15 percentile of those

based on gradient direction informativeness, and matched image points whose

gradient directions were within 15 degrees of an object point's gradient direction.

This resulted in the following:

Possible Image locations

Phone Cup Plug
phonel: (85,31) 100 cupl: (84,63) 63 plug1: (53,27) 25

cup2: (60.66) 36 plu-2: (30,30) I)
plug3: (30,26) 10

_ plug4: (53,32) 18
plugS: (53,38) 17

Figure 5.3 shows these possible locations on the original images. These three lists

of likely locations, with their respective confidences, were then checked against

each other for angular consistency as described in Chapter -3. The resuiting con-

sistency graph is shown in Figure 5.4a. The graph was then pruned resulting in

the removal of 3 out of the 8 nodes. Figure 5.4b shows the graph after pruning

and Figure 5.5 shows the remaining possible locations overlaid on the images.

The maximal complete subgraphs were three 3-cliques as follows:

- 34.
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Maximal complete subgraphs
1) (phonel(100) cupl(63) plugl(25) )
2) (phonel(100) cupl(63) plug4(18) )
3) (phonel(l00) cupl(63) plug5(17) )

These maximal complete subgraphs were then evaluated using the confidences to

arrive at the best, which was the third one above. In Figure 5.6, the template

points that were actually used in the matching are shown overlaid on their

respective original images at the final locations. The bearings were then calcu-

lated for these image locations and the values passed back to the SELECTOR.

5.3.3. The SELECTOR triansulates

The SELECTOR then simply triangulated, using the landmark bearings

with their known locations, to get the new position. The new uncertainty was

then calculated (as described in Chapter 4). These results are displayed graphi-

cally in Figure 5.7.
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6. Related Literature

Ballard introduced the generalization of the Hough transform [Ball8l] and

presented the parameterization used in this thesis in Ballard and Brown [Bal182].

Davis presented extensions to the generalized Hough transform for matching

hierarchically organized point patterns or patterns of line-segments [Davi82].

Hakalahti, Harwood and Davis (Haka83] constrained matching based on local pro-

perties of contour points and Davis, Kitchen, Hu and Hwang [Davi83 used the

generalized iough transform to match patterns of blobs and ribbons.

The generalized Hough transform can also be used for recognizing three-

dimensional objects in images. If our landmarks were represented as 3D models,

and only very poor estimates were available of our position, then such 3D match-

ing would be of interest. Silberberg [Silb84a,Silb84bJ considered the special case

where only position and rotation on the ground plane are unimnown. This would

be a good representation for our problem. See also Ballard and Sabah [Ba131183J,

and Stockman & Esteva [Stoc84].

Research on autonomous vehicles has led to several papers describing other

methods of automatic position determination. Fukui [FukuSi] presented a

method using a specific diamond-shaped landmark and using distortion of the

shape to determine the vehicle's relative position. This process was extended in

Courtney and Aggrawal [Cour83]. Related papers under the general category of
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camera calibration are Hung, Yeh & Mansbach [Hung83] and Hung, Yeh & liar-

wood [Hung841. Methods using acoustic or !aser ranging sensors are described in

Crowley [Crow83I and Jarvis [Jarv83I, respectively.
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a) Determining the range of angular differences

Pg,

b) The angular difference between peaks

Figure 3.1 Consistency between peaks
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Fig'ure 3.2 Proof of a circumferential solution
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Figure 3.3 Counter-examples to some simple non-solutions
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a) Original graph

b) Alter one iteration of k-star

c) AVter two iterations ot k-star;
bold ircs are after three iterations

F I gpre 3.4 Graph pruning with k-stars and k-tans
0: will be deleted in the next iteration
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Figure 4.1 Determining minimum-FOV
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Figure 4.2 Constraint checking



Figure 4.3 Triangulation
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* a) Possible positions given one landmark's bearing
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b) Possible positions with three landmarks' bearings

Figure 4.4 Determining position uncertainty
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a) Original graph

b) After pruning

Figure 5.4 Pruning of the consistency graph
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Figure 5.7 Results showing new position and uncertainty






